Процессинг биохимия. Созревание (процессинг РНК)

Кэпирование и полиаденилирование иРНК называется процессингом (посттранскрип-ционной модификацией).

Кэпирование:

К 5 " концу всех эукариотических иРНК присоединяется во время процессинга остаток 7-метилгуанозина с образованием уникальной 5 "à 5 " фосфодиэфирной связи . Этот дополнительный нуклеотид получил название кэп или колпачек.

Функции кэпа:

1. он защищает РНК от экзонуклеаз

2. помогает связыванию молекулы мРНК с рибосомой.

Полиаденилирование:

3"-конец также модифицируется сразу после завершения транскрипции. Специальный фермент – полиаденилат-полимераза присоединяет к 3"-концу каждого РНК-транскрипта от 20 до 250 остатков адениловой кислоты (поли(А)). Полиаденилатполимераза узнает специфическую последовательность AAУAAA, отщепляет от первичного транскрипта небольшой фрагмент в 11-30 нуклеотидов и затем присоединяет поли(А) последовательность. Принято считать, что такой "хвост" способствует последующему процессингу РНК и экспорту зрелых молекул мРНК из ядра.

По мере участия иРНК в процессах трансляции, длина полиА фрагмента уменьшается. Критическим для стабильности считается 30 адениловых нуклеотидов.

Вся совокупность ядерных транскриптов РНК-полимеразы II известна как гетерогенная ядерная РНК (гяРНК).

Все 3 класса РНК транскрибируются с генов, которые содержат интроны (неинформативные участки)и экзоны (участки ДНК, несущие информацию). Последовательности, кодируемые интронами ДНК, должны быть удалены из первичного транскрипта до того, как РНК станет биологически активной. Процесс удаления копий интронных последовательностей получил название сплайсинга РНК .

Сплайсинг РНК катализируется комплексами белков с РНК , известными как «малые ядерные рибонуклеопротеидные частицы» (мяРНП, англ. small nuclear ribonucleic particles, snRNP ).Такие каталитические РНК носят название рибозимов.

Функции интронов:

· защищают функционально активную часть генома клетки от повреждающего действия химических или физических (лучевых) факторов



· позволяет при помощи так называемого альтернативного сплайсинга увеличить генетическое разнообразие генома без увеличения числа генов.


Альтернативный сплайсинг:

В результате изменения распределение экзонов одного транскрипта во время сплайсинга возникают различные РНК и следовательно различные белки.

Известны уже более 40 генов, транскрипты которых подвергаются альтернативному сплайсингу. Например, транскрипт гена кальцитонина, в результате альтернативного сплайсинга дает РНК, которая служит матрицей для синтеза кальцитонина (в щитовидной железе) или специфического белка, отвечающего за вкусовое восприятие (в мозге). Еще более сложному альтернативному сплайсингу подвергается транскрипт гена -тропомиозина. Были идентифицированы по крайней мере 8 различных тропомиозиновых иРНК, полученных из одного транскрипта (см рис)

33 . Общая схема биосинтеза белка - необходимые предпосылки:

Информационный поток - схема передачи информации (центральная догма молекулярной биологии). Репликация и транскрипция ДНК - ферменты, механизм. Обратная транскрипция, роль ревертаз. Процессинг и сплайсинг иРНК. Характеристика генетического кода, кодон, антикодон.

Отличие биосинтеза белка от биосинтеза других молекул:

· Нет соответствия между числом мономеров матрицы и в продукте реакции (4 нуклеотида--20 аминокислот)

· Между мРНК (матрица) и пептидной цепью белка (продукт) нет комплементарности.

Общая схема биосинтеза белка - необходимые предпосылки:

· информационный поток (передача информации от ДНК на РНК и на белок)

· пластический поток (аминокислоты, мРНК, тРНК, ферменты)

· энергетический поток (макроэрги АТФ, ГТФ, УТФ, ЦТФ)

Процессинг - это этап формирования функционально активных молекул РНК из первоначальных транскриптов. Процессинг рассматривают как посттранскрипционные модификации РНК, характерные для эукариот. (У прокариот процессы транскрипции и трансляции иРНК идут почти одновременно. Этот тип РНК у них процессинга не претерпевает.)

В результате процессинга первичные транскрипты РНК превращаются в зрелые РНК. Поскольку существует несколько различных типов РНК, то для каждого из них характерны свои модификации.

Процессинг информационной (матричной) РНК

На участках ДНК, кодирующих структуру белка, образуется предшественник информационной (матричной) РНК (пре-иРНК). Пре-иРНК копирует всю нуклеотидную последовательность ДНК от промотора до терминатора транскриптона. То есть она включает концевые нетранслируемые области (5" и 3"), интроны и экзоны.

Процессинг пре-иРНК включает в себя кэпирование, полиаде ни лирование, сплайсинг , а также некоторые другие процессы (метилирование, редактирование).

Кэпирование - это присоединение 7-метил-ГТФ (7-метилгуанозинтрифосфат) к 5"-концу РНК, а также метилирование рибозы двух первых нуклеотидов.

В результате образуется так называемая «шапка» (кэп). Функция кэпа связана с инициацией трансляции. Благодаря ему начальный участок иРНК прикрепляется к рибосоме. Также кэп защищает транскрипт от разрушительного действия рибонуклеаз и выполняют ряд функций в сплайсинге.

В результате полиаде ни лирования к 3"-концу РНК присоединяется полиадениловый участок (поли-А) длинной примерно 100-200 нуклеотидов (содержащих аденин). Данные реакции обеспечивает фермент поли-А-полимераза. Сигналом к полиаденилированию служит последовательность AAUAAACA на 3"-конце. В месте -CA происходит разрезание молекулы иРНК.

Поли-А защищает молекулу РНК от ферментативного распада.

Кэпирование и полиаденилирование происходят еще на этапе транскрипции. Кэп образуется сразу после высвобождения из РНК-полимеразы 5"-конца синтезируемой РНК, а поли-А образуется сразу после терминации транскрипции.

Сплайсинг представляет собой вырезание интронов и соединение экзонов. Экзоны могут соединяться по-разному. Таким образом из одного транскрипта могут образовываться разные иРНК. В сплайсинге информационной РНК участвуют малые ядерные РНК, которые имеют участки, комплементарные концам интронов и связываются с ними. Кроме мяРНК в сплайсинге участвуют различные белки. Все вместе (белки и мяРНК) формируют нуклеопротеидный комплекс - сплайсосому .

После процессинга иРНК становится короче своего предшественника иногда в десятки раз.

Процессинг других видов РНК

При процессинге молекул рибосомальных и транспортных РНК не происходит кэпирования и полиаденилирования. Модификации данных видов РНК происходят не только у эукариот, но и у прокариот.

Три вида рибосомальной РНК эукариот образуются в результате расщепления одного транскрипта (45S-РНК).

Процессинг ряда транспортных РНК может также включать расщепление одного транскрипта, другие тРНК получаются без расщепления. Особенностью процессинга тРНК является то, что молекула РНК проходит длинную цепь модификаций нуклеотидов: метилирование, дезаминирование и др.

Все стадии процессинга и-РНК происходят в РНП-частицах (рибонуклеопротеидных комплексах).

По мере синтеза про-и-РНК, она тут же образует комплексы с ядерными белками – информоферами . И в ядерные, и в цитоплазматические комплексы и-РНК с белками (информосомы ) входят s-РНК (малые РНК).

Таким образом, и-РНК не бывает свободной от белков, поэтому на всем пути следования до завершения трансляции и-РНК защищена от нуклеаз. Кроме того, белки придают ей необходимую конформацию.

Пока вновь синтезированная про-и-РНК (первичный транскрипт или гя-РНК – гетерогенная ядерная РНК) еще находится в ядре, она подвергается процессингу и превращается в зрелую и-РНК, прежде чем начать функционировать в цитоплазме. Гетерогенная ядерная РНК копирует всю нуклеотидную последовательность ДНК от промотора до терминатора, включая нетранслируемые области. После этого гя-РНК претерпевает преобразования, которые обеспечивают созревание функционирующей матрицы для синтеза полипептидной цепочки. Обычно гя-РНК в несколько раз (иногда в десятки раз) больше зрелой и-РНК. Если гя-РНК составляет примерно 10 % генома, то зрелая и-РНК – только 1-2 %.

В ходе ряда последовательных стадий процессинга из про-и-РНК (транскрипта) удаляются некоторые фрагменты, ненужные в последующих стадиях, и происходит редактирование нуклеотидных последовательностей.

При кэпировании происходит присоединение к 5"-концу транскрипта 7-метилгуанозина посредстом трифосфатного моста, соединяющего их в необычной позиции 5"-5", а также метилирование рибоз двух первых нуклеотидов. Процесс кэпирования начинается еще до окончания транскрипции молекулы про-и-РНК. По мере образования про-и-РНК (еще до 30-ого нуклеотида), к 5"-концу, несущему пуринтрифосфат, присоединяется гуанин, после чего происходит метилирование.

Функции кэп-группы:

ü регулирование экспорта и-РНК из ядра;

ü защита 5"-конца транскрипта от экзонуклеаз;

ü участие в инициации трансляции: узнавание молекулы и-РНК малыми субъединицами рибосомы и правильная установка и-РНК на рибосоме.

Полиаденилирование заключается в присоединении к 3"-концу транскрипта остатков адениловой кислоты, который осуществляет специальный фермент poly(A)-полимераза.

Когда синтез про-и-РНК завершен, то на расстоянии примерно 20 нуклеотидов в направлении к 3"-концу от последовательности 5"-AAУAA-3" происходит разрезание специфической эндонуклеазой и к новому 3"-концу присоединяется от 30 до 300 остатков АМФ (безматричный синтез).

Сплайсинг [англ. “splice” – соединять, сращивать]. После полиаденилирования про-и-РНК подвергается удалению интронов. Процесс катализируется сплайсосомами и называется сплайсингом. В 1978 г. Филипп Шарп (Массачусетский технологический институт) открыл явление сплайсинга РНК.

Сплайсинг показан для большинства и-РНК и некоторых т-РНК. У простейших найден автосплайсинг р-РНК. Сплайсинг показан даже для археобактерий.

Не существует единого механизма сплайсинга. Описано по крайней мере 5 разных механизмов: в ряде случаев сплайсинг осуществляют ферменты-матюразы, в некоторых случаях в процессе сплайсинга участвуют s-РНК. В случае автосплайсинга процесс происходит благодаря третичной структуре про-р-РНК.

Для и-РНК высших организмов существуют обязательные правила сплайсинга:

Правило 1 . 5" и 3" концы интрона очень консервативны: 5"(ГT-интрон-AГ)3" .

Правило 2 . При сшивании копий экзонов соблюдается порядок их расположения в гене, но некоторые из них могут быть выброшены.

Точность сплайсинга регулируют s-PНК: малые ядерные РНК (мя-РНК) , которые имеют участки, комплементарные концам интронов. мя-РНК комплементарна нуклеотидам на концах интронов – она временно соединяется с ними, стягивая интрон в петлю. Концы кодирующих фрагментов соединяются, после чего интрон благополучно удаляется из цепи.

③ ТРАНСЛЯЦИЯ [от лат. “translatio” – передача] заключается в синтезе полипептидной цепи в соответствии с информацией, закодированной в и-РНК. Молекула и-РНК (после процессинга у эукариот и без процессинга у прокариот) участвует в другом матричном процессе – трансляции (синтезе полипептида), который протекает на рибосомах (рис. 58).

Рибосомы – немембранные самые мелкие клеточные органоиды, при этом они едва ли не самые сложные. В клетке Е. coli присутствует около 10 3 – 5x10 3 рибосом. Линейные размеры прокариотической рибосомы 210 х 290Å. У эукариот – 220 х 320Å.

Выделяют четыре класса рибосом:

1. Прокариотические 70S.

2. Эукариотические 80S.

3. Рибосомы митохондрий (55S – у животных, 75S – у грибов).

4. Рибосомы хлоропластов (70S у высших растений).

S – коэффициент седиментации или константа Сведберга . Отражает скорость осаждения молекул или их компонентов при центрифугировании, зависящую от конформации и молекулярного веса.

Каждая рибосома состоит из 2-х субъединиц (большой и малой).

Сложность объясняется тем, что все элементы рибосом представлены в одном экземпляре, за исключением одного белка, присутствующего в 4 копиях в 50S субъединице, и не могут быть заменены.

р-РНК выполняют не только функцию каркасов субъединиц рибосом, но и принимают непосредственное участие в синтезе полипептидов.

23S р-РНК входит в каталитический пептидилтрансферазный центр, 16S р-РНК необходима для установки на 30S субъединице инициирующего кодона и-PHK, 5S р-РНК – для правильной ориентации аминоацил-тPHK на рибосоме.

Все р-РНК обладают развитой вторичной структурой: около 70% нуклеотидов собрано в шпильки.

р-РНК в значительной степени метилированы (СН 3 -группа во втором положении рибозы, а также в азотистых основаниях).

Порядок сборки субъединиц из р-РНК и белков строго определен. Субъединицы, не соединенные друг с другом, представляют собой диссоциированные рибосомы. Соединенные – ассоциированные рибосомы. Для ассоциации нужны не только конформационные изменения, но и ионы магния Mg 2+ (до 2x10 3 ионов на рибосому). Магний нужен для компенсации отрицательного заряда р-РНК. Все реакции матричного синтеза (репликация, транскрипция и трансляция) связаны с ионами магния Mg 2+ (в меньшей степени – марганца Мn 2+).

Молекулы т-РНК представляют собой относительно небольшие нуклеотидные последовательности (75-95 нуклеотидов), комплементарно соединённые в определённых участках. В результате формируется структура, напоминающая по форме лист клевера, в которой выделяют две наиболее важные зоны – акцепторная часть и антикодон.

Акцепторная часть т-РНК состоит из комплементарно соединённых 7 пар оснований и несколько более длинного одиночного участка, заканчивающегося 3′-концом, к которому присоединяется транспортируемая соответствующая аминокислота.

Другой важный участок т-РНК – антикодон , состоящий из трёх нуклеотидов. Этим антикодоном т-РНК по принципу комплементарности определяет себе место на и-РНК, определяя тем самым очерёдность присоединения транспортируемой им аминокислоты в полипептидную цепочку.

Наряду с функцией точного узнавания определённого кодона в и-РНК молекула т-РНК связывается и доставляет к месту синтеза белка определённую аминокислоту, присоединённую ферментом аминоацил-тРНК-синтетазы. Этот фермент обладает способностью к пространственному узнаванию, с одной стороны, антикодона т-РНК и, с другой, – соответствующей аминокислоты. Для транспортировки 20 типов аминокислот используются свои транспортные РНК.

Процесс взаимодействия и-РНК и т-РНК, обеспечивающий трансляцию информации с языка нуклеотидов на язык аминокислот, осуществляется на рибосомах.

Рибосомы представляют собой сложные комплексы рибосомной РНК (р-РНК) и разнообразных белков. Рибосомная РНК является не только структурным компонентом рибосом, но и обеспечивает связывание её с определённой нуклеотидной последовательностью и-РНК, устанавливая начало и рамку считывания при образовании пептидной цепи. Кроме того, они обеспечивают взаимодействие рибосомы с т-РНК.

В рибосомах имеются две зоны. Одна из них удерживает растущую полипептидную цепь, другая – и-РНК. Кроме того, в рибосомах выделяют два участка, связывающих т-РНК. В аминоацильном участке размещается аминоацил-т-РНК, несущая определённую аминокислоту. В пептидильном находится т-РНК, которая освобождается от своей аминокислоты и покидает рибосому при её перемещении на один кодон и-РНК.

В процессе трансляции выделяют следующие стадии :

1. Стадия активации аминокислот . Активация свободных аминокислот осуществляется при помощи особых ферментов (аминоацил-тРНК-синтетаз) в присутствии АТФ. Для каждой аминокислоты существует свой фермент и своя т-РНК.

Активированная аминокислота присоединяется к своей т-РНК с образованием комплекса аминоацил-т-РНК (аа-т-РНК). Только активированные аминокислоты способны образовывать пептидные связи и формировать полипептидные цепочки.

2. Инициация . Начинается с присоединения лидирующего 5"-конца и-РНК с малой субъединицей диссоциированной рибосомы. Соединение происходит так, что стартовый кодон (всегда АУГ) оказывается в «недостроенном» Р-участке. Комплекс аа-т-РНК с помощью антикодона т-РНК (УАЦ) присоединяется к стартовому кодону и-РНК. Имеются многочисленные (особенно у эукариот) белки – факторы инициации .

У прокариот стартовый кодон кодирует N-формилметионж, а у эукариот – N-метионин. В дальнейшем эти аминокислоты вырезаются ферментами и не входят в состав белка. После образования инициирующего комплекса происходит объединение субъединиц и «достраивание» Р- и А-участков (рис.60).

3. Элонгация . Начинается с присоединения в А-участок и-РНК второго комплекса аа-т-РНК с антикодоном, комплементарным следующему кодону и-РНК. В рибосоме оказываются две аминокислоты, между которыми возникает пептидная связь. Первая т-РНК освобождается от аминокислоты и покидает рибосому. Рибосома перемещается вдоль нити и-РНК на один триплет (в направлении 5"→3"). 2-я аа-т-РНК перемещается в Р-участок, освобождая А-участок, который занимает следующая 3-я аа-т-РНК. Таким же образом присоединяются 4-я, 5-я и т. д. аминокислоты, принесенные своими т-РНК.

4. Терминация . Завершение синтеза полипептидной цепочки. Наступает тогда, когда рибосома дойдет до одного из терминирующих кодонов. Имеются особые белки (факторы терминации ), которые узнают эти участки.

На одной молекуле и-РНК может располагаться несколько рибосом (такое образование называется полисома), что позволяет осуществлять синтез нескольких полипептидных цепей одновременно

Процесс биосинтеза белка проходит с участием большего количества специфических биохимических взаимодействий. Он представляет собой фундаментальный процесс природы. Несмотря на чрезвычайную сложность (особенно в клетках эукариот), синтез одной молекулы белка длится всего 3-4 секунды.

Аминокислотная последовательность выстраивается при помощи транспортных РНК (т-РНК), которые образуют с аминокислотами комплексы - аминоацил-тРНК. Каждой аминокислоте соответствует своя т-РНК, имеющая соответствующий антикодон, «подходящий» к кодону и-РНК. Во время трансляции рибосома движется вдоль и-РНК, по мере этого наращивается полипептидная цепь. Биосинтез белка обеспечивается за счет энергии АТФ.

Готовая белковая молекула затем отщепляется от рибосомы и транспортируется в нужное место клетки, но для достижения своего активного состояния белкам требуется дополнительная посттрансляционная модификация.

Биосинтез белка происходит в два этапа. В первый этап входит транскрипция и процессинг РНК, второй этап включаеттрансляцию. Во время транскрипции фермент РНК-полимераза синтезирует молекулу РНК, комплементарную последовательности соответствующего гена (участка ДНК). Терминатор в последовательности нуклеотидов ДНК определяет, в какой момент транскрипция прекратится. В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, и редко происходит редактирование нуклеотидных последовательностей. После синтеза РНК на матрице ДНК происходит транспортировка молекул РНК в цитоплазму. В процессе трансляции информация, записанная в последовательности нуклеотидов, переводится в последовательность остатков аминокислот.

19.ДНК. Строение, свойства, кодовая система.

Введение

Биосинтез белка можно разделить на стадии транскрипции , процессинга и трансляции . Во время транскрипции происходит считывание генетической информации, зашифрованной в молекулах ДНК, и запись этой информации в молекулы мРНК. В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, ненужные в последующих стадиях, и происходит редактирование нуклеотидных последовательностей. После транспортировки кода из ядра к рибосомам происходит собственно синтез белковых молекул, путем присоединения отдельных аминокислотных остатков к растущей полипептидной цепи.

Процессинг

Между транскрипцией и трансляцией молекула мРНК претерпевает ряд последовательных изменений, которые обеспечивают созревание функционирующей матрицы для синтеза полипептидной цепочки. С появлением процессинга в эукариотической клетке стало возможено комбинирование экзонов гена для получения большего разнообразия белков, кодируемым единой последовательностью нуклеотидов ДНК.

Кэпирование

Химическая структура кэпа

При кэпировании происходит присоединение к 5"-концу транскрипта 7-метилгуанозина посредстом трифосфатного моста, соединяющего их в необычной позиции 5"-5", а также метилирование рибоз двух первых нуклеотидов. Процесс кэпирования начинается еще до окончания транскрипции молекулы пре-мРНК.

Функции кэп-группы:

  • регулирование экспорта мРНК из ядра;
  • защита 5"-конца транскрипта от экзонуклеаз;
  • участие в инициации трансляции

Полиаденилирование

Полиаденилирование заключается в присоединении к 3"-концу транскрипта от 100 до 200 остатков адениловой кислоты, осуществляемом специальным ферментом poly(A)-полимераза.

Сплайсинг

После полиаденилирования мРНК подвергается удалению интронов. Процесс катализируется сплайсосомой и называется сплайсингом.

Трансляция

Готовая белковая молекула затем отщепляется от рибосомы и транспортируется в нужное место клетки . Для достижения своего активного состояния некоторые белки требуют дополнительной посттрансляционной модификации .


Wikimedia Foundation . 2010 .

Смотреть что такое "Процессинг (биология)" в других словарях:

    У этого термина существуют и другие значения, см. Процессинг (биология). Процессинг деятельность, включающая в себя обработку и хранение информации, необходимой при осуществлении платежей. Термин часто используется в отрасли банковских… … Википедия

    Доставка малых РНК, содержащих шпильки, при помощи вектора на основе лентивируса и механизм РНК интерференции в клетках млекопитающих РНК интерференция (а … Википедия

    Пре мРНК со стеблем петлёй. Атомы азота в основаниях выделены голубым, кислорода в фосфатном остове молекулы красным Рибонуклеиновые кислоты (РНК) нуклеиновые кислоты, полимеры нуклеотидов, в состав которых входят остаток… … Википедия

    Центральная догма молекулярной биологии обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом… … Википедия

    Пре мРНК со стеблем петлёй. Атомы азота в основаниях выделены голубым, кислорода в фосфатном остове молекулы красным Рибонуклеиновые кислоты (РНК) нуклеиновые кислоты, полимеры нуклеотидов, в состав которых входят остаток ортофосфорной кислоты … Википедия

    Пре мРНК со стеблем петлёй. Атомы азота в основаниях выделены голубым, кислорода в фосфатном остове молекулы красным Рибонуклеиновая кислота (РНК) одна из трёх основных макромолекул (две другие … Википедия

    Центральная догма молекулярной биологии обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом Криком… … Википедия

    Схема синтеза белка рибосомой Биосинтез белка сложный многостадийный процесс синтеза полипептидной цепи из … Википедия

Сразу после синтеза первичные транскрипты РНК по разным причинам еще не имеют активности, являются "незрелыми" и в дальнейшем претерпевают ряд изменений, которые называются процессинг . У эукариот процессингу подвергаются все виды пре-РНК, у прокариот – только предшественники рРНК и тРНК.

Процессинг предшественника матричной РНК

При транскрипции участков ДНК, несущих информацию о белках, образуются гетерогенные ядерные РНК, по размеру намного превосходящие мРНК. Дело в том, что из-за мозаичной структуры генов эти гетерогенные РНК включают в себя информативные (экзоны ) и неинформативные (интроны ) участки.

1. Сплайсинг (англ. splice – склеивать встык) – особый процесс, в котором при участии малых ядерных РНК происходит удаление интронов и сохранение экзонов.

Последовательность событий сплайсинга

2. Кэпирование (англ. cap – шапка) – происходит еще во время транскрипции. Процесс состоит в присоединении к 5"-трифосфату концевого нуклеотида пре-мРНК 5"-углерода N 7 -метил-гуанозина.

"Кэп" необходим для защиты молекулы РНК от экзонуклеаз, работающих с 5"-конца, а также для связывания мРНК с рибосомой и для начала трансляции.

3. Полиаденилирование – при помощи полиаденилат-полимеразы с использованием молекул АТФ происходит присоединение к 3"-концу РНК от 100 до 200 адениловых нуклеотидов, формирующих полиадениловый фрагмент – поли(А)-хвост. Поли(А)-хвост необходим для защиты молекулы РНК от экзонуклеаз, работающих с 3"-конца.

Схематичное представление матричной РНК после процессинга

Процессинг предшественника рибосомальной РНК

Предшественники рРНК являются более крупными молекулами по сравнению со зрелыми рРНК. Их созревание сводится к разрезанию прерибосомной РНК на более мелкие формы, которые уже непосредственно участвуют в формировании рибосомы. У эукариот существуют четыре типа рРНК – 5S-, 5,8S-, 18S- и 28S-рРНК . При этом 5S-рРНК синтезируется отдельно, а большая прерибосомная 45S-РНК расщепляется специфичными нуклеазами с образованием 5,8S-рРНК, 18S-рРНК и 28S-рРНК.

У прокариот молекулы рибосомальной РНК совсем иные по своим свойствам (5S-, 16S-, 23S-рРНК), что является основой изобретения и использования ряда антибиотиков в медицине.

Процессинг предшественника транспортной РНК

1. Модификация нуклеотидов в молекуле путем дезаминирования, метилирования, восстановления.
Например, образование псевдоуридина и дигидроуридина.

Строение модифицированных уридиловых нуклеотидов

2. Формирование антикодоновой петли происходит путем сплайсинга



error: Контент защищен !!